Adjoint Methods for the Infinity Laplacian Partial Differential Equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Infinity Laplacian, Aronsson’s Equation and Their Generalizations

The infinity Laplace equation ∆∞u = 0 arose originally as a sort of Euler–Lagrange equation governing the absolute minimizer for the L∞ variational problem of minimizing the functional ess-supU |Du|. The more general functional ess-supUF (x, u, Du) leads similarly to the so-called Aronsson equation AF [u] = 0. In this paper we show that these PDE operators and various interesting generalization...

متن کامل

Various Properties of Solutions of the Infinity–laplacian Equation

We collect a number of technical assertions and related counterexamples about viscosity solutions of the infinity Laplacian PDE −∆∞u = 0 for ∆∞u := ∑n i,j=1 uxiuxj uxixj .

متن کامل

on the goursat problem for a linear partial differential equation

in this paper, the goursat problem of a general form for a linear partial differential equation is investigated with the help of the riemann function method. some results are given concerning the existence and uniqueness for the solution of the suggested problem.

متن کامل

Instrumental variable methods for identifying partial differential equation models

This paper presents instrumental variable methods for identifying partial differential equation models of distributed parameter systems in presence of output measurement noise. Two instrumental variable-based techniques are proposed to handle this continuous-time model identification problem: a basic one using input-only instruments and a more sophisticated refined instrumental variable method....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archive for Rational Mechanics and Analysis

سال: 2011

ISSN: 0003-9527,1432-0673

DOI: 10.1007/s00205-011-0399-x